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Motivations:

Braids are familiar since ancient times 

- Decoration, Communication, Personalization, Events, ….

Braid groups attract more attention for their use in pubic-key 
cryptography, first by Anshel, Anshel and Goldfeld in 1999: 

I. Anshel, M. Anshel et D.Goldfeld : An algebraic method for public
key cryptography, Math. Research Letters 6 (1999) 287–291.

Since then, there has been intensive research in this field: new 
public-key schemes were developed and broken. 
Aim:

- Review some algorithmic and combinatorial properties of braid groups, 
- Show how braid groups are applied in cryptography
- Some discussions

Braid groups have been studied from different point of view 

- Topologically and Geometrically since 1925 when they were 
introduced by E. Artin.

- Algebraically since first results appeared

- Cryptographic applications 
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OUTLINE:

I. Overview on braid and braid groups 

II. Some combinatorial properties of braid groups

III. Overview on Cryptography

IV. (Basic) Braid based Public Key Cryptosystems (PKC) and some 
(major) attacks

V. Discussions on the future of the Braid Group Cryptography (BGC)
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I. Overview on braid and braid groups

I.1- Braids

One can imagine braid (group) from an geometric  approach. 

A braid = A sequence of crossed (twisted) strands.

Fig. 1.1: Decorative braids
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Indeed, braids are three-dimensional figure consisting of n disjoint curves 
connecting the points (1,0,0), …, (n,0,0) to the points (1,0,1), …, (n,0,1) 
in R3.

Fig. 1.2: A braid on 5 strands
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Planar diagrams are just the planar projection of the 3-dimensional 
figure. So, it is important to specify,  when two strands intersect, 
which crosses over the other. 

Thus a braid can be associated to a 
(at least one) planar diagram.

Braids are usually considered to start 
at the top and end at the bottom.

Fig. 1.3: From braid to braid diagram
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An n-braid is obtained by intertwining the strands and fixing the lower 
ends on the lower bar.  Notice that a pair of strands can be intertwined 
in two ways: by passing the strand on the left over or under the strand 
on the right.

One could continue the twisting arbitrarily many times, or twist in the 
reverse direction.

Intuitively, strands are labeled by 1, 2,  to n, attached on 2 parallel 
horizontal bars.

Fig. 1.4: A braid diagram
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I.2- Particular braids

Elementary braids σi : strands i and i+1 intersect; strand i+1 crosses 
over strand i, and other strands run parallel with no crossings. 

Fig. 1.6: σi diagram

Fig. 1.5: the trivial braid on 3 strands diagram

Trivial braid denoted 1 = all strands run
parallel with no crossings.



9

Braid asr : represents the braid formed by lifting strands s and r (s > r) 
above all the others, crossing strand s over strand r, and then setting 
the strands down again. 

Observe the similitude with permutations !!! But the main difference : 
how strands cross ?

Fig. 1.7: asr diagram
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Fundamental braid Δn: represents the braid on n strands, where any 
two strands cross positively exactly once.

When all the strands cross positively, we called the braid positive 
braid. Permutation braids are positive braids such that each pair of 
strands crosses at most once. 

So Δn is a permutation braid defined by: iΔ = n – i + 1 (1 ≤ i ≤ n)

Fig. 1.8: The fundamental braid Δ4 on 4 strands diagram
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I.3- Composition (product) of two braids (braid diagrams) = 

concatenation (juxtaposition)

i.e. match up the ends of the strands on the first braid to the beginnings 
of strands on the second braid. 

x

y

xy

Fig. 1.9: The product of two braid on 3 strands
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Now 

- This product is associative;

- The product of an n-strand braid by the trivial n-strand braid will 
give the n-strand braid. So, the trivial n-strand braid behaves 
like the identity element.

Attention! In a planar diagram, some intersections of 
strands can be independent on each other; i.e. a braid 
can be represented by several planar diagrams.

Let  Dn be the set of n-strand braid diagrams.

Then Dn with the above defined product is a monoid.  
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I.4- braid diagrams equality = continuous deformation (diagram 
isotopy)

Two braids are considered equal if one can be obtained from the other 
by sliding the crossings past one another without adding or 
removing any other crossings and without cutting the strands.

The relation  « ≅ » diagram isotopy is an equivalent relation which is 
compatible with product (concatenation). 

Fig. 1.10: Equal (equivalent) braids
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I.5- Braid inverse = The inverse of any braid is its mirror image with 
the face of the mirror perpendicular to the strings.

x

x x-1
Indeed

x-1

Fig. 1.11: The inverse of a braid
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I.6- Braid group

Let Bn = Dn /≅

Then  Bn with the product (concatenation) is a group.

This is called the n-strands braid group.

braid group.= ({braid diagrams, up to isotopy}, concatenation)
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Remarks

Let x be the following braid. It is possible to cut into small parts 
corresponding to elementary braids

Any braid can be written as a product of elementary braids 
together with their inverses

i.e     Bn = grp(σ1, …, σn-1)

The elementary braids (σ1, …, σn-1) are the call the Artin 
generators.

1
12

2
3

−− σσσ

Fig. 1.12: Decomposition of braid through elementary braids
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• In fact,  E. Artin (1925) proved that the only relations involving 
these generators are:

1

1

=−=

>−=

ji

ji

jijiji

ijji

σσσσσσ

σσσσ

Illustrated by:

ijji σσσσ =

111 +++ = iiiiii σσσσσσ

Fig. 1.13: Braid group relators diagrams
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So, the n-strands braid group is given by generators and relators: 

Bn = 〈 σ1, …, σn-1 :                                           〉
1

1

=−=

>−=

ji

ji

jijiji

ijji

σσσσσσ

σσσσ

Many different approaches to define Braid groups provide its various 
properties and tools to prove and solve Problems : combinatorial, 
geometric, topological approaches, …

There exist several presentation of the Braid Group Bn

For example through the Birman-Ko-Lee generators asr [Garber, 2009 
or Dehornoy, 2006]
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II.1. From an algebraic point of view

II. Some combinatorial properties of braid groups

- B1 = {1} is the trivial group.  B2 = 〈σ1〉 is isomorphic to Z;

- B3 = 〈σ1,σ2 : σ1σ2σ1 = σ2σ1σ2〉 ≅ 〈 x,y : x2 = y3〉 where x = σ1σ2σ1 , 
y = σ1σ2.

- Z(Bn), the centre of Bn , is the infinite cyclic subgroup Z(Bn) =          , 
where 

Δn = (σ1 ⋅ ⋅ ⋅ σn-1)(σ1 ⋅ ⋅ ⋅ σn-2) ⋅ ⋅ ⋅ σ1 ;

Indeed, in Bn one has: Δnσi = σn-iΔn , and thus , 
for 1 ≤ i ≤ n – 1.

22
niin Δ=Δ σσ

〉Δ〈 2
n

- B4 = 〈σ1,σ2,σ3 : σ1σ2σ1 = σ2σ1σ2 , σ2σ3σ2 = σ3σ2σ3 , σ1σ3 = σ3σ1 〉

- (Bn)ab = Z, the group of integers.
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- Bn contents the symmetric group  Sn of n elements; 

- The map                          such that                                  is an 

epimorphism. Its kernel is the pure braid group denoted                 .
nn SB →:π ( )1, += iiii τσ a

nP=πker

12 =iσ- If we add the relations              for all possible i,  we get the 
presentation of Sn . Hence, Sn is a quotient of Bn.

- Bn is embeddable in Bn+1 (natural inclusion) ; Thus B1 ⊆ ··· ⊆ Bn ⊆ Bn+1 ⊆ ··· 

Let                      .     B∞ is the direct limit of the Bn .nn
BB

1≥∞ ∪=

- Bn is not abelian for n > 2;   (Take σ1σ2 ≠ σ2σ1 as permutations).
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II.2. From a geometric point of view

- Bn is torsion free (Gonzales-Meneses, 2011),

- Braid groups are linear see (Bigelow, 2001) and (Krammer, 2000).

- ……

II.3. Residual properties
Bn ≤ Aut(Fn), where Fn is the free group on n symbols x1, …, xn.

Indeed, for any  1 ≤ i ≤ n – 1, define σi by :

.1,
,

,

1
1
11

1

+≠
+

−
++

+

iijforxx
xxxx

xx

jj

iiii

ii

a

a

a

For example, B3 is the fundamental group of the complement of the 
trefoil knot  K ⊂ S3. i.e. B3 ≅ π1(S3 – K) ≅ π1[SL(2,R)/SL(2,Z)] .

Bn is the fundamental group of certain configuration space  (Fenn, 1999; 
Rolfsen, 2008)
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Obviously any σi (1 ≤ i ≤ n – 1) is an automorphism of  Aut(Fn).
So gp(〈σ1 , …, σn-1〉) ≤ Aut(Fn). Now, Bn → Aut(Fn) is injective and Bn ≤ Aut(Fn).

- Bn , Pn are residually finite, thus Hopfian. Aut(Bn ) is residually finite.

- Pn is residually torsion-free nilpotent (see Bardakov & Bellingeri, 2007)

- Bn is not subgroup separable for n ≥ 4. see (Dasbach & Mangum, 2000) 
However  Bn is πc (cyclic subgroup separable). see (E. Feder, 2009) .

Consequence : WP is solved, but the GWP - not

- Aut(Bn ) = 〈 Inn(Bn ), ε 〉 where                      and is complete for n ≥ 4 
(centreless and characteristic). see (J. Dyer and E. Grossman, 1981).

1: −
ii σσε a

Problems : What about p-residallity of Bn , Pn , Aut(Bn ) , for some prime p ?

Are Bn , Pn , Aut(Bn ) residually nilpotent ?

What about conjugacy subgroup (or p) separability in Bn , Pn ?
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II.4. Algorithmic properties and problems
• The WP is effectively solved in polynomial time in Braid groups 

(there exist canonical, normal forms for each element of the group)
- Garside normal form : w = Δn

rP1P2⋅⋅⋅Pk : 

There exist polynomial algorithms and computer platforms to represent 
a braid on a normal form, and this representation is unique.

- Birman-Ko-Lee canonical form : w = δn
jA1A2⋅⋅⋅Ak : 

- CP is very difficult to solve when n > 6. (CDP, CSP, MCSP) 
- RP is very difficult (RP, REP). (Tsaban, 2007)
- Decomposition problem, 
- Triple Decomposition problem,
- Twisted Conjugacy Problem (TCP) (Gonzales-Meneses, 2011)
- Schifted Conjugacy Problem (ShCP, ShCSP) (Longrid & al. 2009)
- …

- Dehornoy handle reduction .

• Residuality, hyperbolicity and small cancellation problems ?
• New generators and consequences ? 

• Difficult problems in Braid groups 
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Why Braid groups are so interesting ?

Despite their theoretical role in various domains (mathematics 
(topology, geometry, …) physics, biology, …) 

- Computability (arithmetic of braid groups)
- Existence of ‘’ difficult ‘’ problems

Numbers Braids
Divisibility (gcd, lcm)
Order ≤ (in some sense)
Primality prime Simple (permutation braid)
Decomposition (WP) Factorization Normal forms
Power DLP CP (CSP)

DH DH
RP RP (REP)
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In this last decade, Public Key Cryptosystems based on the CP in braid 
groups have been developed and broken. The intensive research on 
this field leads to the so-called « Braid Group Cryptography (BGC)».

There exist packages to compute braids (MAGMA, CBRAID, 

CRAG, SINGULAR, GAP, BRAIDING, SAGE, …). 
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III. Overview on Cryptography

Cryptography = secured data transmission, exchange.
For message transmission, the plain text is protected by a 
transformation (encryption).  The scripted text (non-comprehensible) 
obtained is retransformed (decryption) to obtain the plain text.

Cryptanalysis = vulnerabilities of algorithms needed to secure  data 
transmission, exchange.

Cryptosystems or cryptographic algorithms are mathematical functions 
needed to encrypt and decrypt.

III.1- Cryptology = Cryptography + Cryptanalysis
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III. 2. Symmetric Cryptography and Public Key Cryptography 

Symmetric Cryptography :

When the encryption and the decryption keys can be deduced one 
from the  other, we talk about Symmetric Cryptography.

The well known protocols are DES, 3DES, AES, …

Advantage: There are fast.

Problem : But how do you get the Keys ?
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Public Key Cryptography (Diffie-Helman, 1976)
In this case, the users has 2 keys: 
- 1 key known as public key, largely diffused
- 1 key known as private key, which is kept secret
These systems are called asymmetric or Public Key Cryptosystems (PKC)

PKC lie on some functions called « one way functions ».
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PKC has been applied for:

- Confidential message transmission;

- Key exchange (KEP or KAP);

- Authentication ; 

- Signature.

Alice sends to Bob a (clear or ciphered) message with a signature 
proving the origin of the message. 

Note that each signature scheme leads to an authentification 
scheme.

- …. 



30

FP: Find two large primes p and q, each about 100 digits long. Let n = pq
and k = ϕ(n) = (p-1)(q-1), the Euler number. Choose a random integer r [3 
≤ r ≤ k] such that r has no common factors with k. It is easy to find D (the 
inverse of r modulo k), that is Dr ≡ 1 (mod k).

III-3  Examples of some PKC

RSA

Public key r and n 

Private key p, q, k, D

Bob wants to send a plain message text m to Alice (m ∈ Zn)

Enciphering (Bob) c = m r (mod n)

Deciphering (Alice) m = cD (mod n)

This method is currently secure, since in order to determine the 
secret decryption key D, the intruder should factor the number n (200 
or so digit), which is a very hard task.
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El Gamal

Public key p, g and A 
Private key a
Bob wants to send a plain message text m to Alice (m ∈ Zp)
Enciphering (Bob) Chooses k, 1 ≤ k ≤ p–2, and computes K = gk (mod p)

Computes c = mAk (mod p) and sends (K,c) to Alice
Deciphering (Alice) m = cK - a (mod p)

DLP: find a such that ga ≡ A (mod p); p is a big prime, g and A are given, 
g of order p–1 modulo p and p does not divide A with 1 ≤ a ≤ p–2. 

Indeed, cK - a ≡ cg - ak ≡ cA - k ≡ m (mod p)
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DH KEP

DH KEP: Two persons (Alice and Bob) want to share a common secret 
key, which they will use for message transmission (through a classical 
cryptographic system).

DHP: find C, such that C = gab (mod p) , a and b are unknown integer 
such that ga ≡ A and gb ≡ B (mod p); p is a big prime, g, A and B are not 
divisible by p, with g of order p–1 modulo p. 
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Fiat-Shamir Authentication Scheme

Authentication: Alice (the prover) wishes to prove her identity to Bob
(the verifier) i.e. she wishes to prove that she knows some private
(secret) key without enabling an intruder watching the
communication to deduce anything about her private key.
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Fiat-Shamir Authentication Scheme based on RSA and Rabin

FP and SQRP: Find two large primes p and q, each about 100 digits long. 
Let n = pq Alice chooses an integer A in [1, n-1] such that A ≡ a2 mod n .

Public Key n , A
Private key (Alice) a
Alice whishes to be identified by a server or by Bob
Engagement (Alice) Chooses k, computes K = k² mod n and

sents K
Challenge (Server or Bob) Takes r ∈ {0,1} and sends
Answer  (Alice) Computes y = kar mod n and sends
Verification (Server or Bob) Computes y2 and compare with KAr mod n
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Remark : RSA, El Gamal , DH KEP , Fiat-Shamir protocols above
are based on difficult problems (Factorization, DLP, DHP, …) in
number theory
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We now present some basic PKC based on braid groups. We will 
present:

- The AAG KEP;

- The KLCHKP KEP or DH type KEP, 

- A transmission scheme (El Gamal-type)

- A Fiat-Shamir type Authentication scheme

IV. Braid based Public Key Cryptosystems and Majors attacks

Nearly all these schemes are based on the difficulty to solve the CP in 
braid groups.
CSP: Given two braids p, p’ which are conjugate. Find the conjugator
i.e. an element s which satisfies: p’ = s-1ps.

So, Assuming that the CSP is difficult enough in Braid groups, we
consider two public sets of braids. Alice and Bob who want to share a
common secret key and they have a private key each.

IV.1 Basic Cryptosystems based on braid groups
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Public keys 2 sets of braids: p1,…, pk and   q1,…qm in Bn

ALICE BOB
Private keys a word u on k letters and their 

inverses
a word v on m letters and 
their inverses

Action
s = u(p1,…, pk)

q’i = sqis-1 (i=1,…, m)
r = v(q1,…, qm)

p’j = rpjr-1 (j=1,…, k)
Secret key KA = su(p’1,…, p’k)-1 = [s, r] KB = v(q’1,…, q’m)r-1 = [s, r]

where u(p1,…, pk) is the substitution of the i-th letter of the alphabet by pi
(for all 1 ≤ i ≤ k).
Indeed, KA = su(p’1,…, p’k)-1 = sru(p1,…, pk)-1r-1 = srs-1r-1= sv(q1,…, qm)s-1r-1

= v(q’1,…, q’m)r-1 = KB . 

The AAG KEP (AAG, 1999)

The AAG KEP is based on the MCSP, a variant of the CP.
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Public keys one braid   p in Bn

ALICE BOB
Private keys a braid a in Bn a braid b in Bn,2n

Action
pA = apa-1

pB = bpb-1

Secret key KA = apBa-1 KB = bpAb-1

Remark: The braids a and b commute since they are words of strands 1 
to n and n+1 to 2n respectively. So ab = ba and then apBa-1 = abpb-1a-1= 
bapa-1b-1 = bpAb-1.

The security here is based on the difficulty to find a from (p, pA) and/or b
from  (p, pB); the CSP (DH-type KEP).  

The KLCHKP  KEP or DH-type (KLCHKP, 2000)
Although braid groups are not commutative, they contains large subgroups 
such that each element of the first subgroup commutes with each element 
of the second subgroup
Note Bn the n-strand braid group and Bn,2n the subgroup of B2n generated 
by σn+1, …, σ2n-1.
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El Gamal on braid groups (KLCHKP, 2000)

Public key p, p’ with p’ = sps-1 ,  p, p’ ∈ Bn

Private key s,     s ∈ LBn

Bob wants to send a plain message text m to Alice (m ∈ {0,1}N)   
Enciphering (Bob) Chooses a random r ∈ UBn and sends the encrypted 

text m’’ = m ⊕ h(rp’r-1) together with additional datum 
p’’ = rpr-1.   

Deciphering (Alice) m = m’’ ⊕ h(sp’’s-1) .

Bob wishes to send Alice a message m. He can use Alice’s public key to
encipher his message. Alice must be able to retrieve Bob’s message using
her private key, but an intruder watching the communication should not.

Indeed, the braids s and r commute; so sp’’s-1 = srpr-1s-1 = rsps-1r-1 = rp’r-

1; thus m’’ ⊕ h(sp’’s-1) = m ⊕ h(rp’r-1) ⊕ h(sp’’s-1) = m.

where LBn = 〈σ1, ⋅⋅⋅, σn-1〉 and UBn = 〈σn+1, ⋅⋅⋅, σ2n-1〉 and h is collision free 
one-way hash function.
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Fiat-Shamir type Authentication  on braid groups (SDG, 2006)

The proover (Alice) chooses a braid t = sm ∈ Bn, for some integer m, publishes
t and keep s secret.

Public Key t , m
Private key (Alice) s
Alice whishes to be identified by a server or by Bob
Engagement (Alice) Chooses rm ∈ Bn , computes x = rtr-1 and

sents x .
Challenge (Server or Bob) Takes k ∈ {0,1} and sends
Answer  (Alice) If k = 0, sends y = r

If k = 1, sends y = rsr-1

Verification (Server or Bob) If k = 0, checks that yty-1 = x
If k = 1, checks that ym = x

Broken [Groch & al., 2006]
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Some more cryptosystems based on braid groups
There exist some more cryptographic schemes on braid groups

- Signature schemes:

- Group Authentification schemes:

Signature schemes based on Matching Conjugate Search Problem 
(MCSP) were proposed by K.H. Ko & al. (2002).

Group Signature schemes based on CSP, DP and RP were proposed 
by T. Thomas and A:K/ Lal in 2006.

- Group Signature schemes:

- …

Group Authentication schemes based on CSP and the Root Extraction 
Problem were proposed by H. Sibert, P. Dehornoy & M. Girault, (2006).
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IV.2 Some major attacks

As we see, these basic cryptographic schemes in braid groups are
based on the CP (MCSP, CSP, CDP …). The security of these schemes
depends on the difficulty to solve the CP in braid groups. So the
proposed attacks are algorithms that attempt to solve this problem.

Several strategies are considered. Here we will sketch majors ones,
namely:

- *-SS attacks (algorithms) and the heuristic algorithm (solution of the
CP);

- Linear representation attack (using auxiliary groups);

- Length based attacks (probabilistic approach).

Remark that there exist some more attacks.
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IV.2.1 *SS attacks [S.J. Lee and E. Lee, 2002]
The approach: given x ∈ Bn .

x is associated with a distinguished finite set SS(x) of its conjugates. 

(SS(x) called the Summit Set). 

Then this set can be replaced with some of its subsets (SSS(x) or USS(x) 
or RSS(x)) which is smaller and therefore easier to determine.

Given x ∈ Bn , compute a finite subset SS(x) of the conjugacy class of x such 
that:

(1). x, y ∈ Bn are conjugate iff SS(x) = SS(y) 
(2). For each x ∈ Bn, one can compute efficiently a representative ⎯x ∈ SS(x) 
and an element a ∈ Bn such that a-1xa=⎯x
(3). There is a finite algorithm which can construct the whole set SS(x) for any  
representative ⎯x ∈ SS(x) .
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Now,  solve the CDP/CSP for a given x , y by performing the following 
steps:

(a). Find representatives ⎯x ∈ SS(x) and⎯y ∈ SS(y)
(b). Using the algorithm from (3), compute further elements of SS(x)
(while keeping track of the conjugating element), until either:

(ii) ⎯y is found in SS(x), so x and y are conjugate and the   
conjugating element is provided, or
(ii) the entire set SS(x) has been constructed without 
encountering ⎯y, and x and y are not conjugated.

Different algorithms are based on this approach and the computation of 
special subsets SS(x), x∈ Bn.

SSS(x) = finite set of the conjugates of x having minimal canonical length 
len(x) (or having maximal infimum and minimal supremum, at the same time)

Given x ∈ Bn, one can find ⎯x∈ SSS(x) by a finite sequence of special 
conjugations called cycling and decycling (see D. Gaber or S.J. Lee and 
E. Lee)
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Now, if x, y ∈ Bn and the representatives ⎯x∈ SSS(x) and ⎯y∈ SSS(y) are 
computed, one can check whether x and y are conjugate:

- If inf(x )≠ inf(y) or sup(x) ≠ sup(y), then x and y are not conjugate. 

- Otherwise, compute SSS(x) and check whether ⎯y ∈ SSS(x)]. 

( ) ( ))()()()( 1
1

112 xxxxxxxc ppp
r

p −−−− =⋅⋅⋅Δ= τττ

rrrr
p

r
p

r xxxxxxxxxxxxd 1
121

1
121 )()( −

−
−

− =⋅⋅⋅Δ=⋅⋅⋅Δ= τ

ini −σστ a:

nr
p Bxxx ∈⋅⋅⋅Δ= 1 0>r

ni ≤≤1

Remark: the cycling function c maps SSS(x) to itself. So define

SSS(x) ⊇ USS(x) = consisting of all y∈ SSS(x) such that cm(y) = y, for some m > 0. 
Thus, USS(x) consists of a finite set of disjoint orbits, closed under cycling.

Now using the USS, one can solve the CDP/CSP in braid groups. 

(see D. Gaber or S.J. Lee and E. Lee for details).
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A heuristic algorithm using SSS [ Hofheinz and al., 2002]

The idea: 

If we start with two elements in the same conjugacy class, their 
representatives in the SSS will be conjugated by a permutation braid.

So, given a pair (x , x’) of braids, where x’ = s-1xs, we do the following steps:

(1). By a variant of cycling and decycling, we find⎯x ∈ SSS(x) and⎯x'∈ SSS(x);

(2). Try to find a permutation braid P such that P - 1xP=⎯x‘ .

If P is found, then at the end we will have at hand the needed conjugator for 
breaking the cryptosystem, since the conjugators can be followed in the 
cycling/decycling process.

Reduction of the CSP: [Maffre, 2005 & 2006]
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IV.2.2 Linear attacks

The method here is to use linear representations of braid groups: i.e. 
mapping braid groups into an auxiliary group (of matrices), in which the 
CSP is easy. In this way, one can solve the CSP in Bn , since the CP is 
easy in linear groups.

The best known linear representation of the braid group Bn is the 
Colored Burau representation [H.R. Morton, 1999]
The Colored Burau Group:
For i = 1, …, n, let 
where (i i+1) is a transposition (when i = n the transposition is defined to 
be (i 1)) 

and 

( ))1(),( += iitCy iii

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−=

1

1
1

1

)( tttCi

with 1 on the diagonal, 0 elsewhere, except in the i-th row where we 
have  0  0 ⋅⋅⋅ 0  t –t 1 0 ⋅⋅⋅ 0 0 and –t on the diagonal.
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Now, denote  CBn+1 = gp〈y1, ⋅⋅⋅ , yn〉.  
An element of CBn+1 is of type (M, σ) where M is an n x n matrix with 
coefficients that are finite Laurent polynomials in the variables t1, … , tn over the 
integers, and σ is a permutation in Sn+1 , and the product in CBn+1 is defined by

(M, σ) · (M ’, σ’) = (M x σ(M ’), σσ’),
where    σ(M’) denotes the matrix obtained from M’ by permuting the variables 
t1, …, tn appearing in the coefficients of M’ by σ. 

The attack [J. Hugues, 2002]:
- Take one or several pairs of conjugate braids (p, p’) associated with the same       
conjugating braids. 
- Compute their Burau image
- Solve the CSP (MCSP) in the linear group.

One can check that the elements yi (i = 1, … n-1) satisfy the braid relations.

So, we have a homomorphism from Bn to CBn. Thus every braid can be 
associated to a colored Burau matrix.

Since the kernel of this representation is “small”, there is a non-negligible 
probability that we find the correct conjugator and hence we break the 
cryptosystem.
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Remarks:

1. S.J. Lee and E. Lee (2002) indicated a weakness in the AAG protocol 
based on the shared key.

2. The Lawrence-Krammer representation (D. Krammer, 2002):
This is another linear representation which associates every braid in Bn

with a matrix of  size          with entries in a 2-variable Laurent Polynomial 

ring  

Using this representation, J. Cheon and B. Jun (2003) attack the DH-
type protocol.         
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IV.2.3 Some more attacks

Length-based attacks (probabilistic heuristic approach)

Idea (J. Hugues and A. Tannenbaum, 2000):   

Some more attacks exist (see D. Gaber or P. Dehornoy). 

Retrieve a conjugator for a pair (p , p’) by starting with p’, which is supposed 
to be derived from p, then iteratively conjugate p’ into a new braid tp’t-1 of 
minimal length, and finally check whether tp’t-1 is equal to p . 

For more details, see D. Gaber, S. Kaplan, B. Tsaban and U. Vishne (2005, 
2006)
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V. Future direction of the BGC

We know that Bn is embeddable in Bn+1 ; Thus B1 ⊆ ··· ⊆ Bn-1 ⊆ Bn ⊆ Bn+1 ⊆ ··· 
Let nn

BB
1≥∞ ∪=

V.1. A cryptosystem based on the Shifted Conjugacy Problem 
(ShCP) [Dehornoy, 2006]

We now discuss future direction for the BGC. Some ideas for the 
construction of new cryptosystems.

Definition: Let                 . We define

where dx is the shift of x in B∞ i.e.                      for  each i ≥ 1.
∞∈Byx, 1

1
−⋅⋅⋅=∗ dxdyxyx σ

1: +iid σσ a

Problem (ShCSP): Let                  and                   . Find a shifted 
conjugator i.e. a braid     satisfying 

∞∈ Bps, psp ∗='
psp ∗= ~'s~

P. Dehornoy proposed a scheme like the Fiat-Shamir authentication 
scheme. So let S be a set with a binary operation which satisfies:

(S is an LD-system)

The protocol is as follows: 

)()()( prsrpsr ∗∗∗=∗∗
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Protocol:

Public key: Two elements p, p’ ∈ S such that p’ = s∗p .

Private keys: Alice: s ∈ S
Alice: Chooses a random r ∈ S and sends Bob x = r∗p and x’ = r∗p’ .
Bob: Chooses a random bit c and sends it to Alice.
Alice: If c = 0, sends y = r (then Bob checks: x = y∗p and x’ = y∗p’);

If c = 1, sends y = r∗s (then Bob checks: x’ = y∗x).

Alice is the prover who wants to convince Bob that she knows the 
secret key s.

Now one can use the shifted conjugacy operation as the ∗ operation 
on B∞ in order to get a LD-system.

Problems:

- cryptanalysis direction (SS theory, length based attack) ? Yes ! [Longrid & 
al., 2009]

- cryptosystem direction (LD-system on the braid group or different group) ? 
Yes ! [Kalka, in progress] 
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V.2. Link to knot theory: the Markov chains [J. Birman (2002), Glez 
Vasco (2003)]

One of the reasons for the interest of braid groups is the relation with
knot theory. A knot can be tough as the closure of a braid i.e. consider
the 3-dimensional braid diagram; joint the i ends (top and bottom) from
the planar diagram projection to obtain an oriented knot.
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Problem: Can one decide when 2 braids will represent the same knot ?
[see, J. Birman for an affirmative answer called the Markov theorem]
Definition: (Elementary) Markov movements M1 and M2

;                           where11 −⎯→⎯ abab M
nBba ∈, σbb M⎯→⎯ 2

1±= nσσ

Markov movements = finite applications of the elementary Markov 
movements '110 bbbbbb mm =→→⋅⋅⋅→→= −

2 braids which represent the same element in the group will represent
the same knot; and also distinct braids can represent the same knot (for
example conjugate braids).
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Theorem (Markov Theorem): 2 braids (not necessary with the same 
number of strands) will represent the same knot iff one can be obtained 
from the other by a Markov movement 

Markov movements = equivalence relation
The problem of finding the Markov chains generalizes the CP in braid 
groups.

Now it is possible to build a KEP based on this problem
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Problem: How to design the sets MA and MB such that the result 
would be more secure than the KLCHKP protocol ?

KEP based o Markov chains:
Let MA and MB be two set of Markov sequences such that [MA , MB] = 1
and one can decide whether for any Ma∈ MA and Mb∈ MB, if the Markov
sequences MaMb and MbMa generate exactly the same transformation
on a braid.

Public keys 2 sets of Markov sequences: MA and   MB and a 
braid b in Bn

ALICE BOB
Private keys a sequence Ma in MA a sequence Mb in MB

Action b1 = Ma(b)
b2 = Mb(b)

Secret key KA = Ma(b2) KB = Mb(b1)
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V.3. Pure braids, combed braids and combing braids

S.S. Magliveras, D.R. Stinson and T. Trung (2002) proposed the 
scheme MST1 based on the so-called logarithmic signature for finite 
groups. 

Let G be a permutation group of order n. A logarithmic signature is
some sequence of the form α = [α1, … , αs] , where αi is a finite
sequence in G (i.e. a sequence of elements of Sn), with |G| = Πlen(αi).

Every element of the group has a unique representation as a product of 
LS; WP or Factorization Problem (FP)

It is possible to write each pure braid as a product of so called
« combed braids » i.e. pure braids such that all but one strand are
trivial (or the first n-1 strands are parallel).

The security of MST1 is based on the construction of the logarithmic
signature. The idea above is generalized for infinite groups and a
construction of logarithmic signature on pure braid groups [Glez Vasco,
(2003)]
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MST1 cryptosystem
Let G be a group of permutations of order n, let η be a supertame
logarithmic signature (the factorization can be achieved in time O(n²).

Public keys: G, η and a pair of logarithmic signature (α,β) with α wild
(not tame) and β tame (the factorization can be computed in polynomial 
time of order n.

Private key: {θ1, … , θk} transversal logarithmic signature such that 

Encryption: Let m ∈ Z|G| be the message; the scripted message is   

Decryption: The plain text is obtained by computing:

kθθαβ ˆˆˆˆ
1

1 ⋅⋅⋅=−

)(ˆˆ 1 mc αβ −=

)(ˆˆ)(ˆˆ 1
1

11 ccm k
−−− ⋅⋅⋅== θθβα

Let w ∈ Pn in the Artin generators. w can be uniquely written as:   

where all the vi are combed braids. This leads to an algorithm to solve 
the WP in the pure braid groups. 

11 −⋅⋅⋅= nvvw
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There exists algorithms for combing braids [R.S.D. Thomas (1971)].

Let

We have 

Every braid          belongs to the free group 

So now, deciding whether                can be done in the free group Fi.

Based on this, appropriated wild and tame logarithmic signatures can be 
constructed.

Problem: Can it be applied to develop a cryptosystem like MST1 above ?

( )1
1

1
2

1
1

2
121,

−
−

−
−

−
++−− ⋅⋅⋅⋅⋅⋅= jjiiijjjiA σσσσσσσ

jin AP ,= nji ≤<≤1

iv iiiii AAAF ,1,2,1 ,,, −⋅⋅⋅=

1≡iv

Every logarithmic signature α induces a bijection GZ G →:α̂
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V.4. Further directions

- The minimal length or Shortest Word Problem ;

- The cycling problem [V. Gebhardt and J. Gonzales-Meneses, 2007], 
[Gonzales-Meneses, 2011];

- Schemes based on different non-commutative groups [A. Mahalanobis, 
2005], [Rosenberger, 2011];

- Schemes based on different associative and non-associative structures 
[Kalka, 2012];

- The Markov walk situation [Maffre, 2006];

- Combinatorial group theory and cryptography [V. Shpilrain and G. 
Zapata, 2004], [Kumar, 2011];

- Residual properties of groups in cryptography ? [D. Grigoriev and I 
Ponamarenko, 2005] 

- On which type of groups can we define what kind of difficult problems 
to build cryptosystems ?
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Recapitulative table:
Schemes Problems Attacks
AAG (1999) Multiple CSP S.J. Lee & E. Lee (2002)

KLCHKP (2000) CSP E. Lee & J.H. Park (2003)
D. Hofheinz & R. Steinwandt (2003)

LLL (2003) CDP D. Hofheinz & R. Steinwandt (2003)
J.H. Cheon & B. Jun (2003)
E. Lee & J.H. Park (2003)

SDG (2006) CP, REP
Root problem

A. Groch, D. Hofheinz & R. 
Steinwandt (2006), B. Tsaban (2006)

P. Dehornoy (2006)
?

Shifted CSP Longrid & Ushakov

Glez Vasco (2003)
?

Markov Chains & 
Knot theory

?

M.I. Glez Vasco & al. 
(2003)                        ?

Pure braid (Combing 
braids)

?

V. Shpilrain & al. 2004  
J.C. Birget and al.      ?

CGT & cryptography ?

.… .… .…
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Thanks for your kind attention!
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